de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The permeability transition pore signals apoptosis by directing Bax translocation and multimerization

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78031

Grimm,  S.
Former Research Groups, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

De Giorgi, F., Lartigue, L., Bauer, M. K. A., Schubert, A., Grimm, S., Hanson, G. T., et al. (2002). The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB Journal, 16(2), U153-U172.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-6FD0-3
Zusammenfassung
Mitochondria are key players of apoptosis and can irreversibly commit the cell to death by releasing cytochrome c (Cyt.c) to the cytosol, where caspases 9 and 3 subsequently get activated. Under conditions of oxidative stress, opening of the mitochondrial permeability transition pore (PTP) represents an early trigger and is crucial in causing Cyt.c release. To account for the latter, current models propose that PTP gating would result, as is the case in vitro, in the rupture of the outer mitochondrial membrane caused by mitochondrial matrix swelling. Using live cell imaging and recombinant fluorescent probes based on the green fluorescent protein (GFP) and its mutants, we report that directed repetitive gating of the PTP triggers a delayed Cyt.c efflux, which is not associated with mitochondrial swelling. Instead, subcellular imaging shows that PTP opening signals the redistribution of the cytosolic protein Bax to the mitochondria, where it secondarily forms clusters that appear to be a prerequisite for Cyt.c release. Fluorescence resonance energy transfer imaging further reveals that Bax clustering coincides with the formation of Bax multimers. We conclude that the PTP is not itself a component of the Cyt.c release machinery, but that it acts indirectly by signaling Bax translocation and multimerization.