de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78294

Lambacher,  A.
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;
Fromherz, Peter / Membrane and Neurophysics, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons77980

Fromherz,  P.
Fromherz, Peter / Membrane and Neurophysics, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lambacher, A., & Fromherz, P. (2002). Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes. Journal of the Optical Society of America B-Optical Physics, 19(6), 1435-1453.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-6F1C-C
Zusammenfassung
The luminescence of dye molecules depends on their position in a layered optical system. Conversely, the luminescence can be applied to measure the position of dye molecules above an interface. We formulate the electromagnetic theory of stationary fluorescence in a layered optical system-of light absorption, light detection, and fluorescence lifetime- computing the angular dependence of dipole interaction with all plane waves by a classical Sommerfeld approach. The theory is checked by experiments with stained lipid membranes on silicon with 256 terraces of silicon dioxide. We apply the electromagnetic theory to fluorescence micrographs of living cells on oxidized silicon chips and evaluate distances between the cell membrane and the substrate in a range of 1-150 nm. (C) 2002 Optical Society of America.