de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Phonon-enhanced light-matter interaction at the nanometre scale

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78107

Hillenbrand,  R.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78785

Taubner,  T.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78200

Keilmann,  F.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hillenbrand, R., Taubner, T., & Keilmann, F. (2002). Phonon-enhanced light-matter interaction at the nanometre scale. Nature, 418(6894), 159-162.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-6ECA-C
Abstract
Optical near fields exist close to any illuminated object. They account for interesting effects such as enhanced pinhole transmission 1 or enhanced Raman scattering enabling single- molecule spectroscopy(2). Also, they enable high-resolution (below 10 nm) optical microscopy(3-6). The plasmon-enhanced near-field coupling between metallic nanostructures(7-9) opens new ways of designing optical properties(10-12) and of controlling light on the nanometre scale(13,14). Here we study the strong enhancement of optical near-field coupling in the infrared by lattice vibrations (phonons) of polar dielectrics. We combine infrared spectroscopy with a near-field microscope that provides a confined field to probe the local interaction with a SiC sample. The phonon resonance occurs at 920 cm(-1). Within 20 cm(-1) of the resonance, the near-field signal increases 200-fold; on resonance, the signal exceeds by 20 times the value obtained with a gold sample. We find that phonon-enhanced near-field coupling is extremely sensitive to chemical and structural composition of polar samples, permitting nanometre-scale analysis of semiconductors and minerals. The excellent physical and chemical stability of SiC in particular may allow the design of nanometre-scale optical circuits for high-temperature and high-power operation.