Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structural basis of the adaptive molecular recognition by MMP9

MPG-Autoren
/persons/resource/persons78142

Huber,  R.
Huber, Robert / Structure Research, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77801

Brandstetter,  H.
Huber, Robert / Structure Research, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cha, H. J., Kopetzki, E., Huber, R., Lanzendörfer, M., & Brandstetter, H. (2002). Structural basis of the adaptive molecular recognition by MMP9. Journal of Molecular Biology, 320(5), 1065-1079.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-6EAA-1
Zusammenfassung
Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level. (C) 2002 Elsevier Science Ltd. All rights reserved.