Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Caspase-8 and Apaf-1-independent caspase-9 activation in Sendai virus-infected cells


Neubert,  W. J.
Former Research Groups, Max Planck Institute of Biochemistry, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Bitzer, M., Armeanu, S., Prinz, F., Ungerechts, G., Wybranietz, W., Spiegel, M., et al. (2002). Caspase-8 and Apaf-1-independent caspase-9 activation in Sendai virus-infected cells. Journal of Biological Chemistry, 277(33), 29817-29824.

Cite as:
Apoptotic cell death is of central importance in the pathogenesis of viral infections. Activation of a cascade of cysteine proteases, i.e. caspases, plays a key role in the effector phase of virus-induced apoptosis. However, little is known about pathways leading to the activation of initiator caspases in virus-infected host cells. Recently, we have shown that Sendai virus (SeV) infection triggers apoptotic cell death by activation of the effector caspase-3 and initiator caspase- 8. We now investigated mechanisms leading to the activation of another initiator caspase, caspase-9. Unexpectedly we found that caspase-9 cleavage is not dependent on the presence of active caspases-3 or -8. Furthermore, the presence of caspase-9 in mouse embryonic fibroblast (MEF) cells was a prerequisite for Sendai virus-induced apoptotic cell death. Caspase-9 activation occurred without the release of cytochrome c from mitochondria and was not dependent on the presence of Apaf-1 or reactive oxygen intermediates. Our results therefore suggest an alternative mechanism for caspase-9 activation in virally infected cells beside the well characterized pathways via death receptors or mitochondrial cytochrome c release.