English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra

MPS-Authors
/persons/resource/persons78335

Lottspeich,  F.
Lottspeich, Friedrich / Protein Analysis, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Engel, U., Oezbek, S., Engel, R., Petri, B., Lottspeich, F., & Holstein, T. W. (2002). Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra. Journal of Cell Science, 115(20), 3923-3934.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-6E16-F
Abstract
The novel protein Nowa was identified in nematocysts, explosive organelles of Hydra, jellyfish, corals and other Cnidaria. Biogenesis of these organelles is complex and involves assembly of proteins inside a post-Golgi vesicle to form a double- layered capsule with a long tubule. Nowa is the major component of the outer wall, which is formed very early in morphogenesis. The high molecular weight glycoprotein has a modular structure with an N-terminal sperm coating glycoprotein domain, a central C-type lectin-like domain, and an eightfold repeated cysteine- rich domain at the C-terminus. Interestingly, the cysteine-rich domains are homologous to the cysteine-rich domains of minicollagens. We have previously shown that the cysteines of these minicollagen cysteine-rich domains undergo an isomerization process from intra- to intermolecular disulfide bonds, which mediates the crosslinking of minicollagens to networks in the inner wall of the capsule. The minicollagen cysteine-rich domains present in both proteins provide a potential link between Nowa in the outer wall and minicollagens in the inner wall. We propose a model for nematocyst formation that integrates cytoskeleton rearrangements around the post- Golgi vesicle and protein assembly inside the vesicle to generate a complex structure that is stabilized by intermolecular disulfide bonds.