de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pretherapeutic identification of high-risk acute myeloid leukemia (AML) patients from immunophenotypic, cytogenetic, and clinical parameters

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78821

Valet,  G.
Former Research Groups, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Valet, G., Repp, R., Link, H., Ehninger, A., & Gramatzki, M. (2003). Pretherapeutic identification of high-risk acute myeloid leukemia (AML) patients from immunophenotypic, cytogenetic, and clinical parameters. Cytometry Part B-Clinical Cytometry, 53B(1), 4-10.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-6C01-D
Zusammenfassung
Background: The goal of this study concerned the pretherapeutic identification of high-risk acute myeloid leukemia (AML) patients by data pattern analysis from flow cytometric immunophenotype, cytogenetic, and clinical data. Methods: Sixty-seven parameters of AML patients at diagnosis were classified for predictive information by algorithmic data sieving using iteratively self optimizing triple matrix data pattern analysis (http://www.biochem.mpg.de/valet/classif1.html). Results: Pretherapeutic predictive values for nonsurvival within five years and two years were 100.0% and 83.2%, respectively, compared to 13.9% and 47.4% for the prediction of survival at five years and two years, respectively. At diagnosis, five-year nonsurvivors showed increased patient age and higher concentration of cells in the analyzed specimen, as well as increased levels of % CD2, CD4, CD13, CD36, and CD45 positive AML blasts. Two-year nonsurvivors were characterized by a data pattern of increased patient age and levels of % CD4, CD7, CD11b, CD24, CD45, TH126, and HLA-DR positive AML blasts and decreased levels of % CD1, CD65, CD95, and TC25 positive AML blasts. Cytogenetic abnormalities were not selected for the optimized discriminatory data patterns. Conclusions: The comparatively accurate pretherapeutic identification of high- risk AML patients may prove useful for the development of individualized therapy protocols in stratified clinical patients groups. (C) 2003 Wiley-Liss, Inc.