de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Extraction of functional information from ongoing brain electrical activity. Extraction en temps-réel d'informations fonctionnelles à partir de l'activité électrique cérébrale

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75278

Besserve,  M.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Besserve, M., & Martinerie, J. (2011). Extraction of functional information from ongoing brain electrical activity. Extraction en temps-réel d'informations fonctionnelles à partir de l'activité électrique cérébrale. Irbm, 32(1), 27-34. Retrieved from http://www.kyb.tuebingen.mpg.de/.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-4D4D-6
Abstract
The modern analysis of multivariate electrical brain signals requires advanced statistical tools to automatically extract and quantify their information content. These tools include machine learning techniques and information theory. They are currently used both in basic neuroscience and challenging applications such as brain computer interfaces. We review here how these methods have been used at the Laboratoire d’Électroencéphalographie et de Neurophysiologie Appliquée (LENA) to develop a general tool for the real time analysis of functional brain signals. We then give some perspectives on how these tools can help understanding the biological mechanisms of information processing.