de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning output kernels with block coordinate descent

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83886

Dinuzzo,  F.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Ong,  C. S.
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44483

Gehler,  P. V.
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dinuzzo, F., Ong, C. S., Gehler, P. V., & Pillonetto, G. (2011). Learning output kernels with block coordinate descent. In L. Gerloor, & T. Scheffer (Eds.), Proceedings of the 28th International Conference on Machine Learning (pp. 49-56).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-4C9F-5
Zusammenfassung
We propose a method to learn simultaneously a vector-valued function and a kernel between its components. The obtained kernel can be used both to improve learning performances and to reveal structures in the output space which may be important in their own right. Our method is based on the solution of a suitable regularization problem over a reproducing kernel Hilbert space (RKHS) of vector-valued functions. Although the regularized risk functional is non-convex, we show that it is invex, implying that all local minimizers are global minimizers. We derive a block-wise coordinate descent method that efficiently exploits the structure of the objective functional. Then, we empirically demonstrate that the proposed method can improve classification accuracy. Finally, we provide a visual interpretation of the learned kernel matrix for some well known datasets.