de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  K.
Research Group Machine Learning and Computational Biology, Max Planck Institute for Intelligent Systems, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kam-Thong, T., Pütz, B., Karbalai, N., Müller−Myhsok, B., & Borgwardt, K. (2011). Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs. Bioinformatics, 27(13: ISMB/ECCB 2011), i214-i221. doi:10.1093/bioinformatics/btr218.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-4C93-E
Abstract
Motivation: In recent years, numerous genome-wide association studies have been conducted to identify genetic makeup that explains phenotypic differences observed in human population. Analytical tests on single loci are readily available and embedded in common genome analysis software toolset. The search for significant epistasis (gene–gene interactions) still poses as a computational challenge for modern day computing systems, due to the large number of hypotheses that have to be tested. Results: In this article, we present an approach to epistasis detection by exhaustive testing of all possible SNP pairs. The search strategy based on the Hilbert–Schmidt Independence Criterion can help delineate various forms of statistical dependence between the genetic markers and the phenotype. The actual implementation of this search is done on the highly parallelized architecture available on graphics processing units rendering the completion of the full search feasible within a day.