de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spontaneous persistent activity in entorhinal cortex modulates cortico hippocampal interaction in vivo

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39046

Sakmann,  Bert
Emeritus Group: Cortical Column in silico / Sakmann, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hahn, T. T. G., McFarland, J. M., Berberich, S., Sakmann, B., & Mehta, M. R. (2012). Spontaneous persistent activity in entorhinal cortex modulates cortico hippocampal interaction in vivo. Nature Neuroscience, 15(11), 1531-1538.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-3A65-0
Zusammenfassung
Persistent activity is thought to mediate working memory during behavior. Can it also occur during sleep? We found that the membrane potential of medial entorhinal cortex layer III (MECIII) neurons, a gateway between neocortex and hippocampus, showed spontaneous, stochastic persistent activity in vivo in mice during Up-Down state oscillations (UDS). This persistent activity was locked to the neocortical Up states with a short delay, but persisted over several cortical UDS cycles. Lateral entorhinal neurons did not show substantial persistence, and current injections similar to those used in vitro failed to elicit persistence in vivo, implicating network mechanisms. Hippocampal CA1 neurons' spiking activity was reduced during neocortical Up states, but was increased during MECIII persistent states. These results provide, to the best of our knowledge, the first direct evidence for persistent activity in MECIII neurons in vivo and reveal its contribution to cortico-hippocampal interaction that could be involved in working memory and learning of long behavioral sequences during behavior, and memory consolidation during sleep.