de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

FHI-gap: A GW code based on the all-electron augmented plane wave method

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21677

Jiang,  Hong
Theory, Fritz Haber Institute, Max Planck Society;
Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21564

Gomez Abal,  Ricardo
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21817

Li,  Xinzheng
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jiang, H., Gomez Abal, R., Li, X., Meisenbichler, C., Ambrosch-Draxl, C., & Scheffler, M. (2013). FHI-gap: A GW code based on the all-electron augmented plane wave method. Computer Physics Communications, 184(2), 348-366. doi:10.1016/j.cpc.2012.09.018.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-2020-E
Zusammenfassung
The GW method has become the state-of-the-art approach for the first-principles description of the electronic quasi-particle band structure in crystalline solids. Most of the existing codes rely on pseudopotentials in which only valence electrons are treated explicitly. The pseudopotential method can be problematic for systems with localized d- or f -electrons, even for ground-state density-functional theory (DFT) calculations. The situation can become more severe in GW calculations, because pseudowavefunctions are used in the computation of the self-energy and the core–valence interaction is approximated at the DFT level. In this work, we present the package FHI-gap, an all-electron GW implementation based on the full-potential linearized augmented planewave plus local orbital (LAPW) method. The FHI-gap code can handle core, semicore, and valence states on the same footing, which allows for a correct treatment of core–valence interaction. Moreover, it does not rely on any pseudopotential or frozen-core approximation. It is, therefore, able to handle a wide range of materials, irrespective of their composition. Test calculations demonstrate the convergence behavior of the results with respect to various cut-off parameters. These include the size of the basis set that is used to expand the products of Kohn–Sham wavefunctions, the number of k points for the Brillouin zone integration, the number of frequency points for the integration over the imaginary axis, and the number of unoccupied states. At present, FHI-gap is linked to the WIEN2k code, and an implementation into the exciting code is in progress.