de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Automatic estimation of pressure-dependent rate coefficients

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21563

Goldsmith,  Claude Franklin
Dept. of Chemical Engineering, Massachusetts Institute of Technology;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

c1cp22765c.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Allen, J. W., Goldsmith, C. F., & Green, W. H. (2012). Automatic estimation of pressure-dependent rate coefficients. Physical Chemistry Chemical Physics, 14(3), 1131-1155. doi:10.1039/C1CP22765C.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-1F60-1
Zusammenfassung
A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation.