Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM

MPG-Autoren
/persons/resource/persons62510

Pillai,  D.
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62381

Gerbig,  Christoph
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62450

Kretschmer,  Roberto
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62332

Beck,  Veronika
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62430

Karstens,  Ute
Regional Scale Modelling of Atmospheric Trace Gases, Dr. U. Karstens, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62402

Heimann,  Martin
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BGC1698.pdf
(Verlagsversion), 2MB

BGC1698D.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pillai, D., Gerbig, C., Kretschmer, R., Beck, V., Karstens, U., Neininger, B., et al. (2012). Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM. Atmospheric Chemistry and Physics, 12, 8979-8991. doi:10.5194/acp-12-8979-2012.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-1E7E-9
Zusammenfassung
We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which two models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data.