Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The low-temperature nuclear spin equilibrium of H3+ in collisions with H2

MPG-Autoren
/persons/resource/persons37581

Grussie,  Florian
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30298

Berg,  Max H.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons31190

Wolf,  Andreas
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30721

Kreckel,  Holger
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society,;
Department of Chemistry, University of Illinois at Urbana-Champaign;
Max-Planck-Institut für Astronomie;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grussie, F., Berg, M. H., Crabtree, K., Gärtner, S., McCall, B., Schlemmer, S., et al. (2012). The low-temperature nuclear spin equilibrium of H3+ in collisions with H2. The Astrophysical Journal, 759(1): 21, pp. 1-5. doi:10.1088/0004-637X/759/1/21.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-1817-5
Zusammenfassung
Recent observations of H2 and H3+ in diffuse interstellar sightlines revealed a difference in the nuclear spin excitation temperatures of the two species. This discrepancy comes as a surprise, as H3+ and H2 should undergo frequent thermalizing collisions in molecular clouds. Non-thermal behavior of the fundamental H3+/H2 collision system at low temperatures was considered as a possible cause for the observed irregular populations. Here, we present measurements of the steady-state ortho/para ratio of H3+ in collisions with H2 molecules in a temperature-variable radiofrequency ion trap between 45 and 100 K. The experimental results are close to the expected thermal outcome and they agree very well with a previous micro-canonical model. We briefly discuss the implications of the experimental results for the chemistry of the diffuse interstellar medium.