de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact of tidal mixing with different scales of bottom roughness on the general circulation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons37142

Exarchou,  Eleftheria
Ocean Statistics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons37369

von Storch,  Jin Song
Ocean Statistics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons37193

Jungclaus,  Johann H.
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Exarchou, E., von Storch, J. S., & Jungclaus, J. H. (2012). Impact of tidal mixing with different scales of bottom roughness on the general circulation. Ocean Dynamics, 62, 1545-1563. doi:10.1007/s10236-012-0573-1.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-156C-0
Zusammenfassung
The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias. © 2012 Springer-Verlag Berlin Heidelberg.