de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Revisiting 3D Geometric Models for Accurate Object Shape and Pose

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45541

Stark,  Michael
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45383

Schiele,  Bernt
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zia, M. Z., Stark, M., Schiele, B., & Schindler, K. (2011). Revisiting 3D Geometric Models for Accurate Object Shape and Pose. In IEEE International Conference on Computer Vision (pp. 569-576). Piscataway, NJ: IEEE. doi:10.1109/ICCVW.2011.6130294.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-12F2-5
Zusammenfassung
Geometric 3D reasoning has received renewed attention recently, in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative or coarse-grained quantitative representations. This is linked to the fact that today's object class detectors are tuned towards robust 2D matching rather than accurate 3D pose estimation, encouraged by 2D bounding box-based benchmarks such as Pascal VOC. In this paper, we therefore revisit ideas from the early days of computer vision, namely, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just 2D bounding boxes, including relative 3D positions of object parts. In combination with recent robust techniques for shape description and inference, our approach outperforms state-of-the-art results in 3D pose estimation, while at the same time improving 2D localization. In a series of experiments, we analyze our approach in detail, and demonstrate novel applications enabled by our geometric object class representation, such as fine-grained categorization of cars according to their 3D geometry and ultra-wide baseline matching.