de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44483

Gehler,  Peter
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Rother,  Carsten
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gehler, P., Rother, C., Kiefel, M., Zhang, L., & Schölkopf, B. (2011). Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance. In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 24 (pp. 765-773). La Jolla, CA: NIPS Foundation.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-12F0-9
Zusammenfassung
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.