de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Zigzag Persistent Homology in Matrix Multiplication Time

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45051

Milosavljevic,  Nikola
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Milosavljevic, N., Morozov, D., & Skraba, P. (2011). Zigzag Persistent Homology in Matrix Multiplication Time. In Proceedings of the 27th Annual Symposium on Computational Geometry (SCG'11) (pp. 216-225). New York, NY: ACM. doi:10.1145/1998196.1998229.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-12C6-B
Zusammenfassung
We present a new algorithm for computing zigzag persistent homology, an algebraic structure which encodes changes to homology groups of a simplicial complex over a sequence of simplex additions and deletions. Provided that there is an algorithm that multiplies two $n \times n$ matrices in $M(n)$ time, our algorithm runs in $O(M(n) + n^2 \log^2 n)$ time for a sequence of $n$ additions and deletions. In particular, the running time is $O(n^{2.376})$, by result of Coppersmith and Winograd. The fastest previously known algorithm for this problem takes $O(n^3)$ time in the worst case.