de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Convergence of Hypervolume-Based Archiving Algorithms I: Effectiveness

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44182

Bringmann,  Karl
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44447

Friedrich,  Tobias
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bringmann, K., & Friedrich, T. (2011). Convergence of Hypervolume-Based Archiving Algorithms I: Effectiveness. In N. Krasnogor, & P. L. Lanzim (Eds.), GECCO 2011 (pp. 745-752). New York, NY: ACM. doi:10.1145/2001576.2001678.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0010-120B-F
Zusammenfassung
The core of hypervolume-based multi-objective evolutionary algorithms is an archiving algorithm which performs the environmental selection. A (μ+λ)- archiving algorithm defines how to choose μ children from μ parents and λ offspring together. We study theoretically (μ+λ)-archiving algorithms which never decrease the hypervolume from one generation to the next. Zitzler, Thiele, and Bader (IEEE Trans. Evolutionary Computation, 14:58-79, 2010) proved that all (μ+1)-archiving algorithms are ineffective, which means there is an initial population such that independent of the used reproduction rule, a set with maximum hypervolume cannot be reached. We extend this and prove that for λ<μ all archiving algorithms are ineffective. On the other hand, locally optimal algorithms, which maximize the hypervolume in each step, are effective for λ=μ and can always find a population with hypervolume at least half the optimum for λ<μ. We also prove that there is no hypervolume-based archiving algorithm which can always find a population with hypervolume greater than 1/(1+0.1338(1/λ-1/μ)) times the optimum.