de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Stochastic dynamics of invasion and fixation

MPS-Authors
There are no MPG-Authors available
Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Traulsen, A., Nowak, M. A., & Pacheco, J. M. (2006). Stochastic dynamics of invasion and fixation. Physical review E, 74(1). doi:10.1103/PhysRevE.74.011909.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-100B-E
Abstract
We study evolutionary game dynamics in finite populations. We analyze an evolutionary process, which we call pairwise comparison, for which we adopt the ubiquitous Fermi distribution function from statistical mechanics. The inverse temperature in this process controls the intensity of selection, leading to a unified framework for evolutionary dynamics at all intensities of selection, from random drift to imitation dynamics. We derive a simple closed formula that determines the feasibility of cooperation in finite populations, whenever cooperation is modeled in terms of any symmetric two-person game. In contrast with previous results, the present formula is valid at all intensities of selection and for any initial condition. We investigate the evolutionary dynamics of cooperators in finite populations, and study the interplay between intensity of selection and the remnants of interior fixed points in infinite populations, as a function of a given initial number of cooperators, showing how this interplay strongly affects the approach to fixation of a given trait in finite populations, leading to counterintuitive results at different intensities of selection.