de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A covariant representation of the Ball-Chiu vertex

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4397

Schubert,  Christian
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1210.2331
(Preprint), 423KB

NPB869_417.pdf
(Any fulltext), 257KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ahmadiniaz, N., & Schubert, C. (2013). A covariant representation of the Ball-Chiu vertex. Nuclear Physics B, 869(3), 417-439. doi:10.1016/j.nuclphysb.2012.12.019.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-0D31-D
Abstract
In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger-Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern-Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball-Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry.