English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

MPS-Authors
/persons/resource/persons73229

Filges,  Annette
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62381

Gerbig,  Christoph
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC1695D.pdf
(Preprint), 3MB

BGC1695.pdf
(Publisher version), 4MB

Supplementary Material (public)

BGC1695S1.pdf
(Supplementary material), 154KB

Citation

Rella, C., Chen, H., Andrews, A., Filges, A., Gerbig, C., Hatakka, J., et al. (2013). High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmospheric Measurement Techniques, 6, 837-860. doi:10.5194/amt-6-837-2013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-0C91-E
Abstract
Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point <−25 C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmosphere Watch programme of the World Meteorological Organisation (WMO/GAW) for carbon dioxide (±0.1 ppm in the Northern Hemisphere and ±0.05 ppm in the Southern Hemisphere) and methane (±2 ppb). Drying the sample gas to low levels of water vapour can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular cavity ring down spectroscopy, have led to the development of greenhouse gas analysers capable of simultaneous measurements of carbon dioxide, methane and water vapour. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapour, these instruments permit accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals (WMO, 2011a) without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAWcompatibility goals up to a water vapour concentration of at least 1 %. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.