Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Exome sequencing of an isolated Chilean population affected by Specific Language Impairment (SLI)

MPG-Autoren

Newbury,  Dianne
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Newbury-bgaposter.pdf
(Verlagsversion), 665KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Newbury, D., Villanueva, P., Hoischen, A., Nudel, R., Gilissen, C., Carvajal-Carmona, L., et al. (2012). Exome sequencing of an isolated Chilean population affected by Specific Language Impairment (SLI). Poster presented at the 42nd Annual Meeting of the Behavior Genetics Association [BGA 2012], Edinburgh, UK.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-0BDD-E
Zusammenfassung
Speech and language impairments that are a primary deficit and have no obvious cause (e.g. a comorbid neurological disorder like autism) are diagnosed as Specific Language Impairment (SLI). SLI affects 5–8 % of preschool children and represents a lifelong disability associated with an increased risk of behavioural disorders, social problems and literacy deficits. SLI is highly heritable and twin studies indicate a strong genetic basis. Nonetheless, the underlying genetic mechanisms are expected to be multifactorial and, to date, only three risk variants have been identified. One way to increase the power to detect contributory genetic factors is to study isolated populations derived from relatively recent shared ancestors (founder populations). In 2008, Villanueva described a founder population with a particularly high incidence of SLI (10 times that expected). They inhabit the Robinson Crusoe Island, which lies 677 km to the west of Chile and was colonised in the late 19th century by 8 European and Amerindian families. 77 % of the current island population have a colonising surname and 14 % of marriages involve consanguineous unions. More than 80 % of language impaired individuals can be traced to a pair of founder brothers. This population thus has a short (5-generations) and well documented history and represents a unique resource which could make valuable contributions to the elucidation of genetic mechanisms underpinning SLI. We applied exome sequencing technologies to five language impaired individuals from this population and identified nine nonsynonymous coding changes or splice site mutations that were present in at least three of the five affected individuals sequenced. Sequencing of the entire cohort identified a single non-synonymous coding change that was significantly more frequent in cases than controls (genotype frequencies of 46 and 11 % respectively, p = 4.48 9 10-5). We suggest that this rare coding variant may contribute to the elevated frequency of SLI in this population.