de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Computational modelling of the recognition of foreign-accented speech

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4642

Scharenborg,  Odette
Adaptive Listening, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons4531

Witteman,  Marijt J.
Adaptive Listening, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society, Nijmegen, NL;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons1069

Weber,  Andrea
Adaptive Listening, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Scharenborg_Interspeech12.3.pdf
(Verlagsversion), 77KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Scharenborg, O., Witteman, M. J., & Weber, A. (2012). Computational modelling of the recognition of foreign-accented speech. In Proceedings of INTERSPEECH 2012: 13th Annual Conference of the International Speech Communication Association (pp. 882 -885).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-EBC3-D
Zusammenfassung
In foreign-accented speech, pronunciation typically deviates from the canonical form to some degree. For native listeners, it has been shown that word recognition is more difficult for strongly-accented words than for less strongly-accented words. Furthermore recognition of strongly-accented words becomes easier with additional exposure to the foreign accent. In this paper, listeners’ behaviour was simulated with Fine-tracker, a computational model of word recognition that uses real speech as input. The simulations showed that, in line with human listeners, 1) Fine-Tracker’s recognition outcome is modulated by the degree of accentedness and 2) it improves slightly after brief exposure with the accent. On the level of individual words, however, Fine-tracker failed to correctly simulate listeners’ behaviour, possibly due to differences in overall familiarity with the chosen accent (German-accented Dutch) between human listeners and Fine-Tracker.