de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Distributions of cognates in Europe as based on Levenshtein distance

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons71697

Schepens,  Job
Centre for Language Studies , Radboud University Nijmegen, NL;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society, Nijmegen, NL;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Schepens_2012.pdf
(Verlagsversion), 557KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schepens, J., Dijksta, T., & Grootjen, F. (2012). Distributions of cognates in Europe as based on Levenshtein distance. Bilingualism: Language and Cognition, 15(SI ), 157-166. doi:10.1017/S1366728910000623.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-EBA8-B
Zusammenfassung
Researchers on bilingual processing can benefit from computational tools developed in artificial intelligence. We show that a normalized Levenshtein distance function can efficiently and reliably simulate bilingual orthographic similarity ratings. Orthographic similarity distributions of cognates and non-cognates were identified across pairs of six European languages: English, German, French, Spanish, Italian, and Dutch. Semantic equivalence was determined using the conceptual structure of a translation database. By using a similarity threshold, large numbers of cognates could be selected that nearly completely included the stimulus materials of experimental studies. The identified numbers of form-similar and identical cognates correlated highly with branch lengths of phylogenetic language family trees, supporting the usefulness of the new measure for cross-language comparison. The normalized Levenshtein distance function can be considered as a new formal model of cross-language orthographic similarity.