de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56660

Von Elert,  Eric
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Von Elert, E., & Jüttner, F. (1996). Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum. Phycologia, 35(6 Supplement), 68-73.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-E2A1-5
Abstract
An axenic culture of Trichormus doliolum Bharadwaja, Komarek et Anagnostidis (Nostocales, Cyanophyta) showed growth inhibition of several axenic cyanobacteria and chlorophytes. Allelopathic activity was observed in both phosphorus-limited and -replete chemostat cultures. Phosphorus limitation led to a change in the composition of the released organic compounds and to increased allelopathic activity of the exudate. Allelopathic activity of exudates of the phosphorus-limited and -replete chemostat was confined to the same high-performance liquid chromatography fraction, indicating that the allelopathic compounds released may be similar if not identical. The exudates inhibited photosynthetic oxygen production and enhanced chlorophyll fluorescence in other cyanobacteria. Growth-inhibiting effects showed a linear dose dependency, indicating that even small concentrations of allelopathic compounds influenced the growth of other cyanobacteria and algae. A biomass of Trichormus doliolum 20 times less than that needed for growth inhibition led to an increase in chlorophyll fluorescence of other algae. This suggests that, under light-limited growth conditions, target organisms are more susceptible to allelochemical compounds that interfere with the photosynthetic electron transport. Experiments conducted under light-saturated conditions are likely to underestimate the potential of allelopathic interactions