Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effects of ultraviolet-B radiation on two arctic microbial food webs.

MPG-Autoren
/persons/resource/persons56998

Wickham,  Stephen
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wickham, S., & Carstens, M. (1998). Effects of ultraviolet-B radiation on two arctic microbial food webs. Aquatic Microbial Ecology, 16(2), 163-171.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-E132-1
Zusammenfassung
The impact of UVB radiation on arctic planktonic microbial communities was examined in 2 shipboard experiments conducted on the northeast coast of Greenland, using water from a sea-ice meltwater pond and a land pond. The experiments were designed as a preliminary investigation of the interaction of WE and grazer effects on microbial communities, in order to evaluate the net effect of UVB on intact communities. We used Mylar bags to remove the natural levels of UVB, and a variation of the Landry-Hassett type dilution design to manipulate grazer abundance. The experiments allowed UVB effects to be scaled relative to grazing intensity and to growth in the absence of grazing. UVB effects on ciliates and rotifers were highly species-specific and ranged from no growth rate enhancement with the removal of UVB, to strong enhancement, and even to higher numbers in the presence, rather than absence, of UVB. Removal of UVB had Little or no effect on heterotrophic flagellates. Nano- and picoplanktonic algae were suppressed by UVB in only 1 experiment, and bacteria showed no enhancement in the absence of UVB in either experiment. When UVB effects occurred in nano- or picoautotrophs or HNF, they were substantially smaller than the mortality produced through grazing. It would appear that at current UVB levels, community-level deleterious effects of UVB on arctic microbial food webs can be difficult to discern, due to the species-specificity of the effects.