de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact of weather on a lake ecosystem, assessed by cyclo-stationary MCCA of long-term observations.

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56572

Albrecht,  Dieter
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56779

Krambeck,  Hans-Jürgen
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56680

Müller-Navarra,  Dörthe C.
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56839

Mumm,  Heike
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Güss, S., Albrecht, D., Krambeck, H.-J., Müller-Navarra, D. C., & Mumm, H. (2000). Impact of weather on a lake ecosystem, assessed by cyclo-stationary MCCA of long-term observations. Ecology, 81(6), 1720-1735.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-DF90-D
Zusammenfassung
Temperate lake ecosystems are generally characterized by a strong annual cycle, and the relationships between observations of such ecosystems and external forcing variables can exhibit a complex structure. Furthermore, the observational data record is often short. This makes it difficult to assess the relationships between external forcing factors and their impact on the biological succession. Cycle-stationary maximum cross-covariance analysis (MCCA) allows the effects of seasonality to be modeled in a flexible way, and we describe this statistical technique in detail. MCCA offers an objective method to approximate the high-dimensional total cross-covariance structure by defining "weighting" patterns. With a predictor set of reduced dimension, a suitable regression between forcing variables and ecological response variables can be set up. Cyclo-stationary MCCA is used here to analyze the influence of meteorological variables (air temperature, wind speed, global radiation, humidity, and precipitation) on 13 biological and biogeochemical indicator variables of Plussee, a small lake in northern Germany. The main weather influence on the indicator variables was found to be connected to winter temperature. From the covariance structure the following major signals were detected to be related to higher winter temperature: a more intense spring algal maximum, a higher zooplankton biomass during the algal maximum, a less intense loss of nutrients to the hypolimnion, a higher summer bloom together with changes in the nutrient concentrations, and stronger oxygen consumption in autumn