English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea?

MPS-Authors
/persons/resource/persons56884

Reusch,  Thorsten B. H.
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Worm, B., & Reusch, T. B. H. (2000). Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Marine Ecology Progress Series, 200, 159-166.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-DF7B-1
Abstract
Seagrasses continue to decline at an alarming rate throughout the planet's temperate regions. After a decline recolonization or restoration starts from small patches of single shoots which then propagate vegetatively. We investigated the effects of plant density within a patch and nutrient resources on growth and survival of eelgrass (Zostera marina L.), the dominant seagrass species in the northern temperate zone. We created small (0.5 m(2)) eelgrass patches by planting single shoots in circular plots at high (20 cm) and low (40 cm distance between shoots) density. In a factorial design, the sediment was nutrient-enriched (1) through biodeposition of transplanted mussels (Mytilus edulis L.) (2) by a slow-release NPK-fertilizer or (3) not enriched. The experiment was run over 1 growth period at a relatively nutrient-poor site (<30 mu mol NH4+ l(-1) porewater) in the Baltic Sea. Mussels increased NH4+ concentrations and the fertilizer increased both NH4+ and PO43- in the sediment porewater and the overlying water column, but this had only limited effects on eelgrass shoot growth rates and increase in shoot density, which were high overall (up to 75 mm shoot(-1) d(-1), doubling shoot density every 3 mo). In contrast, increased plant density had clear positive effects on shoot growth, areal expansion of patches and increase in shoot density. These results suggest that nutrient availability is not a major factor in eelgrass patch colonization or survival in the Baltic. Positive interactions among eelgrass shoots appear to be more important than competitive processes, during the early stages of recolonization