English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study

MPS-Authors
/persons/resource/persons56790

Lampert,  Winfried
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56696

Grey,  Jonathan
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lampert, W., & Grey, J. (2003). Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study. Aquatic Biodiversity, 95-101.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-DC33-8
Abstract
The exploitation of a deep algal maximum by Daphnia in the absence of fish predation was studied in large indoor mesocosms. Facing the dilemma of low food but high temperature in the epilimnion vs. high food but low temperature in the hypolimnion, Daphnia distribute above and below the thermocline in order to optimise their fitness. Labelling hypolimnetic algae with N-15 revealed that the vertical distribution of Daphnia is dynamic, i.e., all individuals traverse the thermocline and allocate a certain proportion of their time to feeding in the cold water. The overall energy gain from the deep-water algal maximumis lower than from the same algal concentration in the epilimnion due to the low temperature and the limited time an individual spends in the hypolimnion. The results provide mechanistic support for the hypothesis that Daphnia chose their habitat according to an Ideal Free Distribution with Costs model.