de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effects of UV-B irradiated algae on zooplankton grazing

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56805

Lürling,  Miquel
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

De Lange, H. J., & Lürling, M. (2003). Effects of UV-B irradiated algae on zooplankton grazing. Recent Developments in Fundamental and Applied Plankton Research, 133-144.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-DC24-A
Zusammenfassung
We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species ( Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species ( Daphnia galeata, Bosmina longirostris and Brachionus calyciflorus), representing different taxonomic groups. The phytoplankton species were cultured under PAR conditions, and under PAR supplemented with UV-B radiation at two intensities (0.3 W m(-2) and 0.7 W m(-2), 6 hours per day). Ingestion and incorporation experiments were performed at two food levels (0.1 and 1.0 mg C l(-1)) using radiotracer techniques. The effect of food concentration on ingestion and incorporation rate was significant for all three zooplankton species, but the effect of UV-B radiation was more complex. The reactions of the zooplankton species to UV-B stressed algae were different. UV-B stressed algae did not affect Daphnia grazing rates. For Bosmina the rates increased when feeding on UV-B stressed Microcystis and decreased when feeding on UV-B stressed Chlamydomonas, compared with non-stressed algae. Brachionus grazing rates were increased when feeding on UV-B stressed Cryptomonas and UV-B stressed Scenedesmus, and decreased when feeding on UV-B stressed Microcystis, compared with non- stressed algae. These results suggest that on a short time scale UV-B radiation may result in increased grazing rates of zooplankton, but also in decreased grazing rates. Long term effects of UV-B radiation on phytoplankton and zooplankton communities are therefore difficult to predict.