English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Seasonality of Laboulbenia phaeoxanthae (Ascomycota, Laboulbeniales) and its host Phaeoxantha aequinoctialis (Coleoptera, Carabidae) at a central Amazonian blackwater floodplain

MPS-Authors
/persons/resource/persons57020

Zerm,  Matthias
Working Group Tropical Ecology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56570

Adis,  Joachim
Working Group Tropical Ecology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zerm, M., & Adis, J. (2004). Seasonality of Laboulbenia phaeoxanthae (Ascomycota, Laboulbeniales) and its host Phaeoxantha aequinoctialis (Coleoptera, Carabidae) at a central Amazonian blackwater floodplain. Mycological Research, 108(5), 590-594. doi:10.1017/S0953756204009797.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-DAED-D
Abstract
Terrestrial invertebrates in central Amazonian floodplains must cope with annual long-term inundation. Parasites should be affected mainly indirectly through the specific life-cycles of their hosts. We studied the temporal structure of a beetle–fungus system at a central Amazonian blackwater floodplain (Rio Negro, Brazil). The host species Phaeoxantha aequinoctialis (Coleoptera, Carabidae, Cicindelinae) showed a seasonal, univoltine life-cycle triggered by the annual flood pulse. Infestation frequency of its fungal parasite, Laboulbenia phaeoxanthae (Ascomycota, Laboulbeniales), varied seasonally. However, the seasonality was opposed in host and parasite: the lowest infestation frequencies were observed during periods of highest beetle abundance and vice versa. Periods of lowest beetle abundance coincided with the end of the old generation, those with highest abundance with the appearance of new adults. The resulting annual patterns of a slow spread in the host population resembled the few records of temporal patterns from temperate regions. It is explicitly demonstrated that older adult female beetles are more frequently infested than younger ones. Future studies may reveal whether this is simply the result of specific host life-cycles (driven by a flood pulse, winter, or other factors), or might also be related to potentially easier infestation in older individuals.