de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fitness optimization of Daphnia in a trade-off between food and temperature

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56763

Kessler,  Kirsten
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56790

Lampert,  Winfried
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kessler, K., & Lampert, W. (2004). Fitness optimization of Daphnia in a trade-off between food and temperature. Oecologia, 140(3), 381-387. doi:10.1007/s00442-004-1592-5.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-DAA5-B
Abstract
In thermally stratified lakes with a deep chlorophyll maximum (DCM), Daphnia face a trade-off between food availability and optimum development temperatures. We hypothesize that Daphnia optimize their fitness by allocating the time spent in the different vertical habitats depending on the distribution of algal resources and the temperature gradient. We used the plankton towers (large indoor mesocosms) to study the vertical distribution of a population of Daphnia hyalinaxgaleata in three different temperature gradients with a DCM. Additionally, we determined the fitness of Daphnia in the epilimnion and hypolimnion by transferring water from these layers into flow-through systems where we raised Daphnia and assessed their juvenile growth rate as a measure of fitness. The fitness distribution was correlated with the vertical distribution. The vertical distribution most likely reflected the proportions of time Daphnia allocated to dwelling in the two vertical habitats.