English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters

MPS-Authors
/persons/resource/persons56879

Reichwaldt,  Elke S.
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56954

Stibor,  Herwig
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Reichwaldt, E. S., Wolf, I. D., & Stibor, H. (2005). Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters. Hydrobiologia, 543(1), 199-205. doi:10.1007/s10750-004-7451-x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-D9B4-2
Abstract
Many freshwater zooplankton species perform a diel vertical migration (DVM) and spend the day within the lower, colder hypolimnion of stratified lakes. Trade-offs that arise from this migration have already attracted much attention and the cold temperature in the hypolimnion is thought to be the main cost of this behaviour. In this study we additionally looked at the extra costs daphnids have from being exposed to a fluctuating temperature regime (cold during the day and warm during the night) which is less well studied until today. In our experiment Daphnia hyalina Leydig and Daphnia magna Straus either spent 24 h in constant warm water (19 °C), 24 h in constant cold water (12 °C), or spent 12 h in warm and 12 h in cold water in an alternating way (fluctuating temperature regime). We expected the values of the life history parameters of Daphnia in the fluctuating temperature regime to be exactly halfway between the values of the life history parameters in the warm and cold treatments because the daphnids spent exactly half of the time in warm water, and half of the time in cold water. Concordant with earlier studies our results showed that age at first reproduction and egg development time were reduced at higher temperatures. In the fluctuating temperature regime the values of both parameters were exactly halfway between the values at permanently warm and cold temperature regimes. In contrast, somatic growth was higher at higher temperatures but was lower in the fluctuating temperature regime than expected from the mean somatic growth rate. This suggests that a fluctuating temperature regime experienced by migrating daphnids in stratified lakes involves additional costs for the daphnids.