de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid δ¹³C

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56641

Deines,  Peter
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56696

Grey,  Jonathan
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56662

Eller,  Gundula
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deines, P., Grey, J., Richnow, H.-H., & Eller, G. (2007). Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid δ¹³C. Aquatic Microbial Ecology, 46(3), 273-282.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D7CE-9
Zusammenfassung
Methane-derived carbon has been shown to be an important carbon source for macroinvertebrates in several studies of lake ecosystems using stable isotopes. Furthermore, season and lake morphology appear to influence the importance of methane as a carbon source. However, rarely have the dynamics of the methane cycle been measured concurrently with the isotope signatures of chironomid larvae. We examined the methane dynamics in 2 lakes with contrasting mixing regimes (polymictic and dimictic), while monitoring corresponding changes in chironomid larval δ13C throughout an annual cycle. Both methane turnover rates and abundance of methane-oxidising bacteria were higher in the dimictic lake, where correspondingly lower mean larval δ13C values of –44.2 to –61.7‰ were recorded. In contrast, potential methane production and oxidation rates, as well as cell numbers of methane-oxidising bacteria were always lower in the polymictic lake; corresponding larval δ13C values ranged from –32.3 to –29.6‰. Furthermore, seasonal variation in larval δ13C was more pronounced in the dimictic lake (–50.1 ± 5.9‰) compared to the polymictic lake (–31.1 ± 1.2‰), reflecting the amplitude of turnover rates. This suggests strongly that lake characteristics have an influence on methane turnover rates and, in conjunction with season, affect the subsequent incorporation of methane-derived carbon into freshwater food webs via macroinvertebrates.