English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Food chain effects of nutrient limitation in primary producers

MPS-Authors
/persons/resource/persons56603

Boersma,  Maarten
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56585

Becker,  Claes
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56980

Vernooij,  Sonja
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Boersma, M., Becker, C., Malzahn, A. M., & Vernooij, S. (2009). Food chain effects of nutrient limitation in primary producers. Marine and Freshwater Research, 60(10), 983-989. doi:10.1071/MF08240.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-D628-5
Abstract
The propagation of mineral limitation in primary producers to the second consumer level has rarely been investigated. Recently, it has been shown that limitation effects do travel up the food chain, not only quantitatively, but also qualitatively, and also that these quality effects affect the nutritional condition and growth of secondary consumers. The present study experimentally investigated the effect of phosphorus limitation in combination with fatty acid addition in primary producers (Scenedesmus obliquus) channelled through a primary consumer (Daphnia magna) on the condition of larval rainbow trout (Oncorhynchus mykiss). The C: P ratio and the fatty acid concentrations of the primary producers varied significantly with the phosphorus concentration of the culture media. These differences were also visible in the primary consumers (D. magna) feeding on the algae. The significantly different stoichiometry and fatty acid concentrations of the daphnids fed to larval trout did not lead to significant differences in growth, but the additional supplementation of fatty acid emulsions caused a significant increase in the condition of the fish. It was found that in the case of Daphnia as the primary prey for fish, with its relatively high phosphorus content even under phosphorus limitation, it is unlikely that phosphorus limitation affects fish condition and growth.