de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fixation times in evolutionary games under weak selection

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56574

Altrock,  Philipp M.
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Altrock_NJP_2009.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Altrock, P. M., & Traulsen, A. (2009). Fixation times in evolutionary games under weak selection. New Journal of Physics, 11: 013012. doi:10.1088/1367-2630/11/1/013012.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D5FE-D
Zusammenfassung
In evolutionary game dynamics, reproductive success increases with the performance in an evolutionary game. If strategy A performs better than strategy B, strategy A will spread in the population. Under stochastic dynamics, a single mutant will sooner or later take over the entire population or go extinct. We analyze the mean exit times (or average fixation times) associated with this process. We show analytically that these times depend on the payoff matrix of the game in an amazingly simple way under weak selection, i.e. strong stochasticity: the payoff difference Δπ is a linear function of the number of A individuals i, Δπ=u i+v. The unconditional mean exit time depends only on the constant term v. Given that a single A mutant takes over the population, the corresponding conditional mean exit time depends only on the density dependent term u. We demonstrate this finding for two commonly applied microscopic evolutionary processes.