English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mutation-selection equilibrium in games with multiple strategies

MPS-Authors
/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Antal, T., Traulsen, A., Ohtsuki, H., Tarnita, C. E., & Nowak, M. A. (2009). Mutation-selection equilibrium in games with multiple strategies. Journal of Theoretical Biology, 258(4), 614-622. doi:10.1016/j.jtbi.2009.02.010.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-D5A1-E
Abstract
In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright–Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of n×n games in the limit of weak selection.