de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

When to go: optimization of host switching in parasites with complex life cycles

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56711

Hammerschmidt,  Katrin
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56771

Koch,  Kamilla
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56825

Milinski,  Manfred
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hammerschmidt, K., Koch, K., Milinski, M., Chubb, J. C., & Parker, G. A. (2009). When to go: optimization of host switching in parasites with complex life cycles. Evolution, 63(8), 1976-1986. doi:10.1111/j.1558-5646.2009.00687.x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D592-0
Zusammenfassung
Many trophically transmitted parasites have complex life cycles: they pass through at least one intermediate host before reproducing in their final host. Despite their economic and theoretical importance, the evolution of such cycles has rarely been investigated. Here, combining a novel modeling approach with experimental data, we show for the first time that an optimal transfer time between hosts exists for a "model parasite," the tapeworm Schistocephalus solidus, from its first (copepod) to its second (fish) intermediate host. When transferring between hosts around this time, (1) parasite performance in the second intermediate host, (2) reproductive success in the final host, and (3) fitness in the next generation is maximized. At that time, the infected copepod's behavior changes from predation suppression to predation enhancement. The optimal time for switching manipulation results from a trade-off between increasing establishment probability in the next host and reducing mortality in the present host. Our results show that these manipulated behavioral changes are adaptive for S. solidus, rather than an artifact, as they maximize parasite fitness.