de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Evolutionary games in self-organizing populations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Traulsen, A., Santos, F. C., & Pacheco, J. M. (2009). Evolutionary games in self-organizing populations. In T. Gross, & H. Sayama (Eds.), Adaptive Networks: Theory, Models and Applications (pp. 253-266). Dordrecht [u.a.]: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D580-7
Zusammenfassung
Social networks are dynamic: We make new friends and loose touch with old ones, depending on the interactions with them. Most analytic studies of social networks assume that links remain unchanged at all times. In this case, individuals have no control over the number, frequency or duration of their interactions with others. Here, we discuss analytical and numerical models in which individuals can break links and create new ones. Interactions are modeled as general symmetric twoplayer games. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. In the limiting cases where linking dynamics is much faster than evolutionary dynamics or vice-versa, the system can be tackled analytically.We show how the individual capacity of forming new links or severing inconvenient ones can change the nature of the game. If the linking rules are local, numerical simulations show that networks emerge that have several features of real-world social networks.