English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

MPS-Authors
/persons/resource/persons61277

Junier,  Pilar
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56831

Molina,  Verónica
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56654

Dorador,  Cristina
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56705

Hadas,  Ora
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56764

Kim,  Ok-Sun
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons57008

Witzel,  Karl-Paul
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Junier_2010.pdf
(Publisher version), 380KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Junier, P., Molina, V., Dorador, C., Hadas, O., Kim, O.-S., Junier, T., et al. (2009). Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied Microbiology and Biotechnology, 85(3), 425-440. doi:10.1007/s00253-009-2228-9.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-D570-B
Abstract
The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.