de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

In defence of model-based inference in phylogeography (reply)

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56854

Panchal,  Mahesh
Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Beaumont, M. A., Nielsen, R., Robert, C., Hey, J., Gaggiotti, O., Knowles, L., et al. (2010). In defence of model-based inference in phylogeography (reply). Molecular Ecology, 19(3), 436-446. doi:10.1111/j.1365-294X.2009.04515.x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D4DA-7
Zusammenfassung
Recent papers have promoted the view that model-based methods in general, and those based on Approximate Bayesian Computation (ABC) in particular, are flawed in a number of ways, and are therefore inappropriate for the analysis of phylogeographic data. These papers further argue that Nested Clade Phylogeographic Analysis (NCPA) offers the best approach in statistical phylogeography. In order to remove the confusion and misconceptions introduced by these papers, we justify and explain the reasoning behind model-based inference. We argue that ABC is a statistically valid approach, alongside other computational statistical techniques that have been successfully used to infer parameters and compare models in population genetics. We also examine the NCPA method and highlight numerous deficiencies, either when used with single or multiple loci. We further show that the ages of clades are carelessly used to infer ages of demographic events, that these ages are estimated under a simple model of panmixia and population stationarity but are then used under different and unspecified models to test hypotheses, a usage the invalidates these testing procedures. We conclude by encouraging researchers to study and use model-based inference in population genetics.