de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring the link between genetic relatedness r and social contact structure k in animal social networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons57012

Wolf,  Jochen B. W.
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wolf, J. B. W., Traulsen, A., & James, R. (2011). Exploring the link between genetic relatedness r and social contact structure k in animal social networks. The American Naturalist, 177(1), 135-142. doi:10.1086/657442.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D418-A
Zusammenfassung
Our understanding of how cooperation can arise in a population of selfish individuals has been greatly advanced by theory. More than one approach has been used to explore the effect of population structure. Inclusive fitness theory uses genetic relatedness r to express the role of population structure. Evolutionary graph theory models the evolution of cooperation on network structures and focuses on the number of interacting partners k as a quantity of interest. Here we use empirical data from a hierarchically structured animal contact network to examine the interplay between independent, measurable proxies for these key parameters. We find strong inverse correlations between estimates of r and k over three levels of social organization, suggesting that genetic relatedness and social contact structure capture similar structural information in a real population.