English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Alignment-free detection of local similarity among viral and bacterial genomes

MPS-Authors
/persons/resource/persons56652

Domazet-Lošo,  Mirjana
Research Group Bioinformatics, Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56719

Haubold,  Bernhard
Research Group Bioinformatics, Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Domazet-Lošo, M., & Haubold, B. (2011). Alignment-free detection of local similarity among viral and bacterial genomes. Bioinformatics, 27(11), 1466-1472. doi:10.1093/bioinformatics/btr176.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-D3B7-A
Abstract
Motivation: Bacterial and viral genomes are often affected by horizontal gene transfer observable as abrupt switching in local homology. In addition to the resulting mosaic genome structure, they frequently contain regions not found in close relatives, which may play a role in virulence mechanisms. Due to this connection to medical microbiology, there are numerous methods available to detect horizontal gene transfer. However, these are usually aimed at individual genes and viral genomes rather than the much larger bacterial genomes. Here, we propose an efficient alignment-free approach to describe the mosaic structure of viral and bacterial genomes, including their unique regions.

Results: Our method is based on the lengths of exact matches between pairs of sequences. Long matches indicate close homology, short matches more distant homology or none at all. These exact match lengths can be looked up efficiently using an enhanced suffix array. Our program implementing this approach, alfy (ALignment-Free local homologY), efficiently and accurately detects the recombination break points in simulated DNA sequences and among recombinant HIV-1 strains. We also apply alfy to Escherichia coli genomes where we detect new evidence for the hypothesis that strains pathogenic in poultry can infect humans.