de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

How small are small mutation rates?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons57014

Wu,  Bin
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56693

Gokhale,  Chaitanya S.
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wu, B., Gokhale, C. S., Wang, L., & Traulsen, A. (2012). How small are small mutation rates? Journal of Mathematical Biology, 64(5), 803-827. doi:10.1007/s00285-011-0430-8.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D352-A
Zusammenfassung
We consider evolutionary game dynamics in a finite population of size N. When mutations are rare, the population is monomorphic most of the time. Occasionally a mutation arises. It can either reach fixation or go extinct. The evolutionary dynamics of the process under smallmutation rates can be approximated by an embedded Markov chain on the pure states. Here we analyze how small the mutation rate should be to make the embedded Markov chain a good approximation by calculating the difference between the real stationary distribution and the approximated one. While for a coexistence game, where the best reply to any strategy is the opposite strategy, it is necessary that the mutation rate μ is less than N−1/2 exp[−N] to ensure that the approximation is good, for all other games, it is sufficient if themutation rate is smaller than (N ln N) −1. Our results also hold for a wide class of imitation processes under arbitrary selection intensity.