de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The evolution of sex is favoured during adaptation to new environments

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons61100

Becks,  Lutz
Research Group Community Dynamics, Department Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Becks_2012b.pdf
(Verlagsversion), 640KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Becks, L., & Agrawal, A. F. (2012). The evolution of sex is favoured during adaptation to new environments. PLoS Biology, 10(5): e1001317. doi:10.1371/journal.pbio.1001317.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D30A-0
Zusammenfassung
Both theory and experiments have demonstrated that sex can facilitate adaptation, potentially yielding a group-level advantage to sex. However, it is unclear whether this process can help solve the more difficult problem of the maintenance of sex within populations. Using experimental populations of the facultatively sexual rotifer Brachionus calyciflorus, we show that rates of sex evolve to higher levels during adaptation but then decline as fitness plateaus. To assess the fitness consequences of genetic mixing, we directly compare the fitnesses of sexually and asexually derived genotypes that naturally occur in our experimental populations. Sexually derived genotypes are more fit than asexually derived genotypes when adaptive pressures are strong, but this pattern reverses as the pace of adaptation slows, matching the pattern of evolutionary change in the rate of sex. These fitness assays test the net effect of sex but cannot be used to disentangle whether selection on sex arises because highly sexual lineages become associated with different allele combinations or with different allele frequencies than less sexual lineages (i.e., ‘‘short-’’ or ‘‘long-term’’ effects, respectively). We infer which of these mechanisms provides an advantage to sex by performing additional manipulations to obtain fitness distributions of sexual and asexual progeny arrays from unbiased parents (rather than from naturally occurring, and thereby evolutionarily biased, parents). We find evidence that sex breaks down adaptive gene combinations, resulting in lower average fitness of sexual progeny (i.e., a short-term disadvantage to sex). As predicted by theory, the advantage to sex arises because sexually derived progeny are more variable in fitness, allowing for faster adaptation. This ‘‘long-term advantage’’ builds over multiple generations, eventually resulting in higher fitness of sexual types.