de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On equilibrium properties of evolutionary multi-player games with random payoff matrices

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56973

Traulsen,  Arne
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56693

Gokhale,  Chaitanya S.
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Han, T. A., Traulsen, A., & Gokhale, C. S. (2012). On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theoretical Population Biology, 81(4), 264-272. doi:10.1016/j.tpb.2012.02.004.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-D2FF-1
Zusammenfassung
The analysis of equilibrium points in biological dynamical systems has been of great interest in a variety of mathematical approaches to biology, such as population genetics, theoretical ecology or evolutionary game theory. The maximal number of equilibria and their classification based on stability have been the primary subjects of these studies, for example in the context of two-player games with multiple strategies. Herein, we address a different question using evolutionary game theory as a tool. If the payoff matrices are drawn randomly from an arbitrary distribution, what are the probabilities of observing a certain number of (stable) equilibria? We extend the domain of previous results for the two-player framework, which corresponds to a single diploid locus in population genetics, by addressing the full complexity of multiplayer games with multiple strategies. In closing, we discuss an application and illustrate how previous results on the number of equilibria, such as the famous Feldman–Karlin conjecture on the maximal number of isolated fixed points in a viability selection model, can be obtained as special cases of our results based on multi-player evolutionary games. We also show how the probability of realizing a certain number of equilibria changes as we increase the number of players and number of strategies.