de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

New integrable system of 2dim fermions from strings on AdS(5) x S-5

MPG-Autoren

Frolov,  Sergey
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

jhep012006078.pdf
(Verlagsversion), 356KB

0508140.pdf
(Preprint), 333KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alday, L. F., Arutyunov, G., & Frolov, S. (2006). New integrable system of 2dim fermions from strings on AdS(5) x S-5. Journal of High Energy Physics, 2006(1): 078.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-4AB8-E
Zusammenfassung
We consider classical superstrings propagating on AdS5 × S5 space-time. We consistently truncate the superstring equations of motion to the so-called fraktur sfraktur u(1|1) sector. By fixing the uniform gauge we show that physical excitations in this sector are described by two complex fermionic degrees of freedom and we obtain the corresponding lagrangian. Remarkably, this lagrangian can be cast in a two-dimensional Lorentz-invariant form. The kinetic part of the lagrangian induces a non-trivial Poisson structure while the hamiltonian is just the one of the massive Dirac fermion. We find a change of variables which brings the Poisson structure to the canonical form but makes the hamiltonian nontrivial. The hamiltonian is derived as an exact function of two parameters: the total S5 angular momentum J and string tension λ; it is a polynomial in 1/J and in (λ')1/2 where λ' = λ/J2 is the effective BMN coupling. We identify the string states dual to the gauge theory operators from the closed fraktur sfraktur u(1|1) sector of Script N = 4 SYM and show that the corresponding near-plane wave energy shift computed from our hamiltonian perfectly agrees with that recently found in the literature. Finally we show that the hamiltonian is integrable by explicitly constructing the corresponding Lax representation.