de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56815

Marxsen,  Jürgen
Limnological River Station Schlitz, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Fiebig,  Douglas Michael
Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Marxsen, J., & Fiebig, D. M. (1993). Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments. FEMS Microbiology Ecology, 13(1), 1-12.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-C998-3
Abstract
β-glucosidase activity was investigated in stream-bed sediments using 4-methylumbelliferyl-β-D-glucopyranoside (MUF-β-Glc) as a model substrate. In a perfused core technique, water containing MUF-β-Glc was perfused up through sediment cores. β-glucosidase activity was quantified from the release of fluorescent MUF in water discharged from the cores. At low rates of perfusion, maximum β-glucosidase activity (Vmax) in perfused sediments was similar to that in suspended (unperfused) sediments. Substrate affinity (Km) was higher in the suspended sediments. Vmax and Km both increased when the perfusion rate was raised, although naturally-low substrate concentrations could mean that variability in perfusion rates has little effect on enzyme activity in the field. Vmax was uninfluenced by whether ground or stream water was perfused through the sediments, but Km was higher in cores perfused with groundwater. Increasing concentrations of glucose in the perfusion water resulted in a progressive inhibition of β-glucosidase activity. Although natural concentrations of glucose were low, the high turnover of enzymatically-released glucose probably means that β-glucosidase activity could be regulated by product concentration.